
CoreTone Programmer’s Manual
Page 1

CoreTone 1.2.1cz
Portable macro instrument software sampler for the BupBoop Audio Suite

Care and Feeding Instructions

Written and Designed by : Osman Celimli

CoreTone Programmer’s Manual
Page 2

◊Table of Contents

►What is CoreTone? ... 3
○Licensing .. 3
○Setting Up Your Development Environment .. 4
○Using CoreTone in Your Software.. 4
○WinTone Wrapper Library .. 6
○BupBoop Multiplatform Wrappers .. 7

►Audio Channel Structure ... 8
►Samples .. 9
►Macro Instruments and Sound Effects .. 10

○Sound Effects ... 10
○Instrument Packages .. 10
○Patch Scripts .. 11

►Music ... 12
○Music Tracks .. 12
○Music Scripts .. 12

►CoreTone Code Compiler (CTCC) .. 14

►Core-SASS Music-Oriented Language .. 16
○Constants ... 16
○Comments .. 16
○Timing ... 16
○Sample Packages .. 16
○Macro Instruments and Sound Effects ... 16
○Music Tracks .. 19

►PlayTone Auditioning Suite ... 24
○Getting Started ... 25
○Playing Music ... 26
○Playing Sound Effects .. 27
○Debugging .. 28

CoreTone Programmer’s Manual
Page 3

►What is CoreTone?

CoreTone is a portable wavetable synthesizer, music player, and sound effects driver; as
well as the primary component of the BupBoop Audio Suite. It is based upon macro instruments,
which allow fully programmable envelopes instead of the traditional four-stage ADSR setup.
Internally, the driver treats both instruments and sound effects as a single entity (referred to as
macros), the only difference being that instruments are played with a frequency offset (their note).

Other features include stereo panning, variable channel count, and priority-based sharing
of resources by music and sound effects. CoreTone’s rendering frequency and driver tick rate are
both adjustable at compile time but default to 48 KHz and 240 Hz, respectively.

The primary target of BupBoop and its supporting libraries is Microsoft Windows and
DirectSound. However, the CoreTone synthesizer was written with the intention of portability
among most popular operating systems and performant microcontrollers. CTCC, CoreTone’s
SASS compiler, is also platform agnostic. The only major assumption made for both components
is a little-endian target (and a full C-Standard library for CTCC).

Windows-specific portions of BupBoop include WinTone and PlayTone. The former is a
set of DirectSound wrappers and tools to simplify the use of CoreTone in Windows games, while
the latter is a general-use auditioning program.

Multiplatform software can be simplified through the use of the BupBoop Multiplatform
Wrappers.

○Licensing

 All versions of BupBoop / CoreTone are available under the zlib license, whose terms
and conditions are listed below in full and made available in all major component files :

Version 1.2.1cz, June 18th, 2016

(C) 2015 - 2016 Osman Celimli

 This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages

 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

CoreTone Programmer’s Manual
Page 4

○Setting Up Your Development Environment
 The contents of this folder may be extracted wherever you like. For convenience I

recommend a folder close to root, such as C:\BUPBOOP\ or C:\WINDEV\BUPBOOP\. After

completing this step your development directory should have the following residents :

File / Folder Description
CoreTone\ CoreTone Driver Source
WinTone\ Windows + DirectSound Wrapper Source
PlayTone\ PlayTone Auditioning Suite Source
CTCC\ CoreTone Code Compiler Source (Core-SASS)
SASS\ Core-SASS Examples
types.h BupBoop Types
bupboop.h BupBoop Multiplatform Wrapper

PlayTone.exe PlayTone Executable
CoreTone.dll CoreTone DLL
WinTone.dll WinTone DLL
CTCC.exe CoreTone Code Compiler (Core-SASS)

BupBoop.dsw Visual C++ 6.0 Workspace
CoreTone Programmer’s Manual.pdf This Document

○Using CoreTone in Your Software

The most important aspect of a sound driver is usually generating sound. However, in order
to get CoreTone up and running with your current project you’ll need to be aware of the following :

 Notable Definitions / Equates
o CORETONE_CHANNELS

How many channels the CoreTone SoftSynth will have available for rendering
music and sound effects. This defaults to 16.

o CORETONE_DEFAULT_VOLUME

How loud music will be played when CoreTone is first initialized.

o CORETONE_MUSIC_STACKDEPTH
o CORETONE_PATCH_STACKDEPTH

The music and macro script decoder stack length. This indicates how many
CALLs and LOOPs you can use in your scripts. A value of 4 is recommended.

o CORETONE_DISPATCH_DEPTH
o CORETONE_REQUEST_DEPTH

Specifies the depth of the dispatch and request queues for sound effects.
Increasing these allows more sound effects to be queued up for playback or
manipulation by the user in between driver ticks. A value of 32 is the default, but

this can be lowered to 8 for most software.

o CORETONE_RENDER_RATE and CORETONE_DECODE_RATE

Samplerate of CoreTone’s final rendered audio and the rate at which the driver
itself performs update ticks. These default to 48 KHz and 240 Hz, respectively.

o CORETONE_SAMPLES_MAXENTRIES

o CORETONE_SAMPLES_MAXLENGTH

The maximum number of samples which CoreTone can load from a Sample

CoreTone Programmer’s Manual
Page 5

Package, and the largest size for each individual sample. These default to 256

and 32768, respectively.

 Render Buffer Format
CoreTone expects the target of its render buffer to be 16-Bit Signed Stereo PCM with a
length of CORETONE_BUFFER_LEN mono samples or CORETONE_BUFFER_SAMPLES

stereo samples.

 Consumables / Sound Data
CoreTone accepts four types of consumables : Sample Packages, Sound Effects,
Instrument Packages, and Music Tracks. At minimum, a Sample Package and Instrument
Package are required at initialization time to setup the driver and begin rendering.

 Initializing and Running
After configuring your consumables as described above, you can initialize the driver by
calling ct_init(uint8_t *pSamplePak, uint8_t *pInstrPak) which is

supplied with the base address of a Sample Package pSamplePak and Instrument

Package pInstrPak. If any errors occur during setup, a nonzero value will be returned.

Otherwise, CoreTone will then be ready for rendering and the driver update routine
ct_update(int16_t *pBuffer) may be called at the specified driver tick rate,

CORETONE_DECODE_RATE.

 Commonly Used Subroutines
Once CoreTone has been initialized and is executing once every update tick, the
following functions will be useful to the programmer :

o void ct_pause(void)

o void ct_resume(void)

Pause and silence or unpause and resume all driver activity.
o int32_t ct_isPaused(void)

Indicates if audio is currently paused (nonzero return) or unpaused (zero).

o void ct_stopAll(void)

Cease playback of any currently decoding music, sound effects, or samples.

o void ct_playSFX(uint8_t *pSFX, int8_t cPriority,

 int8_t cVol_Left, int8_t cVol_Right)

Request playback of the sound effect whose base address is pSFX, with priority

cPriority, and panning cVol_Left and cVol_Right.
o void ct_stopSFX(int8_t cPriority)

Cease playback any sound effect whose priority is cPriority.
o void ct_addSFX(uint8_t *pSFX, int8_t cPriority,

 int8_t cVol_Left, int8_t cVol_Right)

Request the playback of the sound effect pSFX on the next batch dump with

priority cPriority, and panning cVol_Left and cVol_Right.
o void ct_dumpSFX(void)

Play all sound effects in the current batch set using ct_playSFX().This can be
used to synchronize the start of multiple sound effects, most commonly with a
game tick.

o void ct_playMusic(uint8_t *pMusic)

Request playback of the music track whose base address is pMusic.
o void ct_stopMusic(void)

Cease playback of any currently decoding music track.

CoreTone Programmer’s Manual
Page 6

o void ct_attenMusic(int8_t cVol)

Request a change in the current music attenuation to the level supplied in cVol,

this may range from 0 (max attenuation, silent) to 127 (no attenuation, loudest).
o int32_t ct_checkMusic(void)

Check to see whether the music is playing (nonzero return) or not (zero), useful
to determine if a single-shot track has finished or if a stop request has completed.

o int32_t ct_getMood(void)

Get the mood flag of the currently playing music track. If no music is playing, the
mood flag will be zero (neutral). This can be used to alter game object behavior
based upon music cues.

o void ct_setRenderCall(ct_renderCall_t pCall)

Assign the function pCall as a post-render callback.
o int32_t ct_getMutex(void)

Aquire the CoreTone access mutex, upon which the caller will be guaranteed that
CoreTone will not perform an update until the mutex is released.
This is expected to be implemented on the platform-specific layer on top of
CoreTone, and therefore this function will always return nonzero (failure).

o int32_t ct_giveMutex(void)

Release the CoreTone access mutex.
This is expected to be implemented on the platform-specific layer on top of
CoreTone, and therefore this function will always return nonzero (failure).

 Post-Render Callbacks
CoreTone allows for the assignment of a single post-render callback. This is a function of
the type ct_renderCall_t, with the following format :

int32_t renderCall(void *pBuffer,

 uint32_t uiFreq, uint32_t uiLen,

 int32_t iAmPaused)

Once a post-render callback is assigned using ct_setRenderCall(pCall), the

function pCall will be executed at the end of each render frame and supplied with the

raw stereo buffer CoreTone has rendered into, pBuffer. This may be manipulated by

the post-render callback in order to perform additional mixing or post-processing. The
samplerate and length of the buffer in stereo samples are provided in uiFreq and

uiLen, respectively. The last argument, iAmPaused indicates whether CoreTone has

been paused (if nonzero) but the callback routine is given the choice of whether or not to
honor this state.
The post-render callback will continue to be executed at the end of each render frame
until it returns zero. CoreTone render updates and therefore post-render callbacks can be
locked out using ct_getMutex()and ct_giveMutex(), allowing the user to safely

exchange data between a game thread and asynchronous post-render callback.

○WinTone Wrapper Library

Windows support for CoreTone is accomplished through the use of the wrapper library
WinTone, which performs audio updates and output using DirectSound and MultiMedia Timers.
All user-facing CoreTone functions (prefaced by ct_x and in coretone.h) have equivalent

WinTone functions which are identical in name and argument, but prefaced by wt_x. These

should be used instead of calls directly to CoreTone in Windows. For multiplatform software,
please use the BupBoop Multiplatform Wrappers.

Some functions have slightly different arguments or offer features not natively available by
CoreTone, these are listed below :

CoreTone Programmer’s Manual
Page 7

 HRESULT wt_init(HWND hParent, uint8_t *pSamplePak,

 uint8_t *pInstrPak)

Initialize both the CoreTone library and DirectSound hookups using the supplied
parent window, sample package, and instrument package.
Will return a generic E_FAIL HRESULT if there was an issue initializing CoreTone or

the specific Windows + DirectSound error if the problem originated from an
interaction with either of those.

 void wt_close(void)

Close down WinTone and all supporting components, should be called before exiting
your Windows application.

 int32_t wt_logOutput(char *pszFile)

Attempt to begin logging the softsynth output to the given file in the RIFF/WAVE
format. Will return a nonzero value if the log could not start.

 void wt_closeLog(void)

Stop the currently active output log, stamp the RIFF/WAVE header on the target file,
and close it.

○BupBoop Multiplatform Wrappers

Multiplatform support for CoreTone and the automatic selection of a wrapper library for a
given target is accomplished through bupboop.h. All audio-pertinent CoreTone functions

(prefaced by ct_x and in coretone.h) have equivalent BupBoop functions which are identical

in name and argument, but prefaced by bb_x. These should be used instead of calls directly to

CoreTone or any platform-specific wrapper library such as WinTone in multiplatform game
software.

All initialization, including library setup and teardown is left aside as a platform specific
implementation due to the vast differences among the operating systems and embedded devices
which may be used with BupBoop and CoreTone.

CoreTone Programmer’s Manual
Page 8

►Audio Channel Structure

All channels of CoreTone’s software synthesizer are identical in features and based upon
the playback of pre-recorded waveforms with variations in both frequency and amplitude. These
are shared by any currently playing music and sound effects, making them a finite (and valuable)
system resource.

For all intents and purposes each channel has the properties listed below :

 Priority
The current priority of the instrument or sound effect playing in the channel. When sound
effects and instruments compete for a given audio channel, those with higher priorities
win out. A priority of zero indicates the channel is currently free (no one is using it).

 Sample
The channel’s currently assigned waveform.

 Sample Mode
How the waveform specified above will be played. This can be either SINGLESHOT (play

straight to the end, then stop) or LOOPING (repeat a selected region).

 Phase
A 16.16-Bit precision phase accumulator indicating the current waveform position.

 Phase Adjustment
A 16.16-Bit precision phase accumulation value indicating the rate at which the waveform
will be traversed during rendering. The final phase adjustment value is actually the sum
of several sub-frequencies :

o Base
16.16-Bit precision value representing the current base frequency of the channel.
This is ignored (zeroed) when playing a sound effect, but is used for the note
frequency in instrument decoding.

o Pitch and Pitch Adjustment
16.16-Bit precision value representing the current offset from the base frequency
and how much to adjust this offset each driver tick. This is ignored (zeroed) when
playing a sound effect, but is used for detuning and pitch bends in instruments.

o Offset and Offset Adjustment
16.16-Bit precision value representing the offset from the sum of the base
frequency and pitch. This is the sole frequency used by sound effects, but is
used by notes for variation from their base frequency.

Noting the above, we can calculate the phase adjustment as follows :

 For Instruments
pitch += pitchAdjustment;

offset += offsetAdjustment;

phaseAdjustment = base + pitch + offset;

 For Sound Effects
offset += offsetAdjustment;

phaseAdjustment = offset;

 Volume and Volume Adjustment
An 8.8 precision signed value, of which the upper 8-Bits are used as the final channel
volume during rendering. Each driver tick the volume adjustment value is added to the
current volume value, allowing for simple amplitude modulation. A value of 0 indicates
silence while 127 is maximum positive volume and -128 is maximum negative (results in
the inversion of the waveform) volume.

 Panning
Two 8-Bit values representing the panning of the channel in the left and right speakers.
These are combined with the volume attribute above to calculate the final stereo
amplitudes, and the same range restrictions apply.

CoreTone Programmer’s Manual
Page 9

►Samples

 The pre-recorded waveforms used by CoreTone to generate its audio are stored in data
structures called Sample Packages. These contain not only the 8-Bit Signed Monophonic
samples which will be used by Instruments and Sound Effects, but information pertaining to the
waveforms’ frequency content. They are arranged in the following format :

 Offset Contents

 0 ‘C’

 1 ‘S’

 2 ‘M’

 3 ‘P’

 4-7 Number of Samples

 8+ Directory Entries (16-Bytes Each):

 \

 0-3 Data Start Offset

 4-7 Data Length

 8-11 Sample Frequency (Sf)

 12-15 Content Frequency (Bf)

 ... Sample Data

Once a sample package has been verified by CoreTone, its base address, directory start

address, and sample count will be cached for later use. However, CoreTone will also be
generating a 32.32 table to speed up calculations later on. This is the frequency ratio table and to
fully understand its purpose we must first describe phase increment calculations.

Calculating playback phase increment (Pi) of a particular sample based upon a desired
frequency requires the knowledge of four components : Rendering Frequency (Rf), Playback
Frequency (Pf), Sample Frequency (Sf), and the Sampled Frequency (Bf).

The naive formula is : Pi = (Sf / Rf) * (Pf / Bf), but the two divides aren't desirable for
performance reasons. Noting that Sf, Rf, and Bf are fixed once the sample package is loaded, we
can reformat the equation :

Pi = Pf * Fr, where Fr = (Sf / (Rf * Bf)) and will be precalculated and stored in 32.32
precision which should give tolerable accuracy when multiplied by a 16.16 frequency to yield the
final 16.16 phase increment.

 The size of the frequency ratio table is set by CORETONE_SAMPLES_MAXENTRIES, which

defaults to 256. Lowering this value will reduce CoreTone’s memory requirements, but will also

reduce the maximum number of samples which may be used by the software synthesizer.

CoreTone Programmer’s Manual
Page 10

►Macro Instruments and Sound Effects

In CoreTone, instruments and sound effects have been merged into a single entity called
macros which describe their sound through a patch script. This allows the audio programmer to
not only create elaborate instruments with all the complex envelopes of sound effects, but also
reduces driver size and complexity.

While the instruments and sound effect patch scripts are decoded identically, they are not
stored in the same data structures. Sound effects live inside of individual files, while instruments
are stored in a single Instrument Package. The headers prefacing individual Sound Effects and
Instrument Packages differ as well. A description of this formatting and encoding follows.

○Sound Effects

 A single sound effect may have one or more associated patch scripts, allowing multiple
channels of sound to be dispatched and controlled simultaneously. Well behaved sound effects
will be formatted as shown below :

 Offset Contents

 0 ‘C’

 1 ‘S’

 2 ‘F’

 3 ‘X’

 4-7 Number of Channels

 8+ Channel Directory

 \

 0-3 Sample Number

 4-7 Patch Script Offset

 ... Patch Scripts

○Instrument Packages

 Instruments may only be dispatched by NOTE ON commands in a music track, and

therefore have slightly different encoding than sound effects. In particular, all instruments are
stored together in one binary.

One patch script is associated with each instrument, allowing control over a single
channel while the instrument is active. However, two offsets within this script are used by the
driver : the start and the note off offset. The latter of these is a user-specified point within the
patch script which the macro decoder will jump to when a note off command is encountered in the
music script. This allows customized behavior for the release phase of each instrument.
 Unlike sound effects, the frequency an instrument is played at will be offset not only by
the effects in its patch script, but the currently playing note in a music script and any pitch bends
applied to it.

 Offset Contents

 0 ‘C’

 1 ‘I’

 2 ‘N’

 3 ‘S’

 4-7 Number of Instruments

 8+ Instrument Directory

 \

 0-3 Sample Number

 4-7 Patch Script Offset

 8-11 Note Off Offset

 ... Patch Scripts

CoreTone Programmer’s Manual
Page 11

○Patch Scripts

Following the instrument or sound effect’s header are the scripts for each of its channels.
This script is a simple bytecode with commands for adjusting the properties of the audio channel
and controlling the execution path of the sound script itself. The commands, their format, and
operations are listed below :

 0: CORETONE_PATCH_END()

Close the patch script decoding process and silence the channel.
 1: CORETONE_PATCH_MODE_SINGLESHOT()

Place the channel’s assigned sample in SINGLESHOT mode, playback will continue from

its current position until the sample’s end. This is useful for percussion samples or
“baked-in” releases.

 2: CORETONE_PATCH_MODE_LOOP(usLoopStart, usLoopEnd)

Place the channel’s assigned sample in LOOPING mode, playback will advance from its

current position until reaching the supplied loop region (usLoopStart and usLoopEnd).

It will then wrap within that region until the mode is changed or the patch script ends.
 3: CORETONE_PATCH_VOLUME(cVol, cAdj_Lo, cAdj_Hi)

Set the volume and volume adjustment for this channel.
 4: CORETONE_PATCH_FREQUENCY(sOffset_Lo, sOffset_Hi,

 sAdj_Lo, sAdj_Hi)

Set the frequency offset and frequency offset adjustment for this channel. The decimal of
the frequency offset is cleared.

 5: CORETONE_PATCH_LOOP_START(cCount)

Set the start of a looping region and define how many counts the loop will last. Negative
loop counts are considered infinite. The maximum number of loops within loops is set at
compile time by CORETONE_PATCH_STACKDEPTH, which has a default of 4.

 6: CORETONE_PATCH_LOOP_END()

Decrement the current loop count, branching back to the loop start if the loop count is
greater than zero or negative (infinite).

 7: CORETONE_PATCH_NOP()

Does absolutely nothing.

 Wait commands are a special case which are somewhat borrowed from MIDI, the delay
(in ticks) is variable length up to four bytes long. The MSB of each byte indicates whether
or not to extend the delay count and the seven remaining bits are placed into bits 7-0,

14-8, 21-15, or 28-22 of said accumulated count.

All other patch commands are below 0x7F and have their MSB clear, so there shouldn't

be any concern of crossover.

CoreTone Programmer’s Manual
Page 12

►Music

Music, like sound effects and instruments, uses a simple scripting language. Macro
Instruments are played for various durations with adjustable frequency offsets, pitch slides, and
panning. Looping is also supported, and as with macros, the maximum loop depth is configurable
by adjusting CORETONE_MUSIC_STACKDEPTH, which has a default of 4. Infinite loops as

applicable in macros are identical in music scripts. Script patterns/subroutines may also be called
and returned from, with the same depth limit as loops.
 All voices of a music script have an adjustable priority. This allows tracks of music to
become more or less important than the sound effects competing with them for available
CoreTone channels. By specifying a priority of zero, a music script is stopped. It should also be
noted that music scripts dispatch from the first channel upward, while sound effects play from the
last channel downward in order to avoid contention.

○Music Tracks

Well behaved music tracks begin with a header indicating their channel requirements as
formatted below :

 Offset Contents

 0 ‘C’

 1 ‘M’

 2 ‘U’

 3 ‘S’

 4-7 Number of Channels

 8+ Channel Directory:

 \

 0 Initial Channel Priority

 1-4 Music Script Offset

 ... Music Scripts

○Music Scripts

 Following a music track’s header are its music scripts, one for each primary channel
script and additional subscripts for CALLs. The scripting commands are made up of one byte

blocks and are a merger of macro scripts and General MIDI. The commands, their format, and
descriptions of their operations are listed below :

 0: CORETONE_MUSIC_SET_PRIORITY(cPriority)

Set the music track's current playback priority. Setting the priority to zero will terminate
the decode process.

 1: CORETONE_MUSIC_SET_PANNING(cPanLeft, cPanRight)

Set the music track's current stereo panning using the two signed bytes following the
command. As with all other signed amplitudes in CoreTone, negative panning values will
cause waveform inversion.

 2: CORETONE_MUSIC_SET_INSTRUMENT(ucInstrument)

Select an instrument from the currently loaded instrument package which will be used to
play all notes on the script’s assigned channel. Instruments may be reselected at any
time during a scripts life.

 3: CORETONE_MUSIC_NOTE_ON(ucNote)

Start playing the supplied note on currently selected instrument. The note values
immediately following the command byte are equivalent to those used in General MIDI.

 4: CORETONE_MUSIC_NOTE_OFF()

Have the currently playing instrument (if any) move to the note off portion of its script.
 5: CORETONE_MUSIC_PITCH(sPitch_Lo, sPitch_Hi, sAdj_Lo, sAdj_Hi)

Set the current pitch offset and adjustment rate.

CoreTone Programmer’s Manual
Page 13

 6: CORETONE_MUSIC_LOOP_START(cCount)

Set the start of a looping region and define how many counts the loop will last. Negative
loop counts are considered infinite.

 7: CORETONE_MUSIC_LOOP_END()

Decrement the current loop count, branching back to the loop start if the loop count is
greater than zero or negative (infinite).

 8: CORETONE_MUSIC_CALL(iOffset)

Call ("jsr") the music script whose base address is calculated by the sum of the current

decode address (immediately after the CALL command) + iOffset.

 9: CORETONE_MUSIC_RETURN()

Return ("rts") from the current music script position to the command after the last CALL

performed.
 10: CORETONE_MUSIC_BREAK()

Return ("rts") all channels (not just the current one) to the lowest return address found

in their pattern CALL stack, effectively bringing all channels back to their "main" script.

 11: CORETONE_MUSIC_NOP()

Strives to do absolutely nothing aside from consume one byte of script space.
 12: CORETONE_MUSIC_SET_MOOD(iMood)

Sets the current mood flag to the supplied value, this may be read by the game software

using ct_getMood(), and used to adjust game behavior based upon music activity. The

mood flag is defaulted to zero (neutral) when a music track is started or stopped.

 Wait commands are a special case which is somewhat borrowed from MIDI, the delay (in
ticks) is variable length up to four bytes long. The MSB of each byte indicates whether or
not to extend the delay count and the seven remaining bits are placed into bits 7-0, 14-

8, 21-15, or 28-22 of said accumulated count.

All other music commands are below 0x7F and have their MSB clear, so there shouldn't

be any concern of crossover.

CoreTone Programmer’s Manual
Page 14

►CoreTone Code Compiler (CTCC)

 The CoreTone Code Compiler (CTCC) generates Sound Effects, Instrument Packages,
and Music Tracks from textual source files written in a music-oriented programming language
called Sound ASSembler (SASS). Two syntaxes are used, one for macro instrument and sound
effect definitions, the other for music tracks. CTCC can also generate Sample Packages from
special descriptor files and 8-Bit Signed Monophonic Samples.

 CTCC is a commandline application and can operate in four modes : Sample Package,
Sound Effects, Instrument Pack, and Music. Running CTCC with no arguments yields its usage :

 In Sample Pack mode CTCC requires two arguments, the first of which indicates where
the generated Sample Package will be stored and the second specifying the location of a sample
descriptor file containing information about all samples which will be included in the package.
 Building the included example sample package can be accomplished as follows :

 In Sound Effects mode CTCC requires two filenames : the first of which indicates the
Sample Package to use and the second of which is the SASS Sound Effects Script file. Individual
sound effect binaries will be generated in the same directory as the Sound Effect Script file, one

for each sound effect. A *.h file containing all sound effect priorities will also be generated.

Building the included example sound effects file can be accomplished as follows :

C:\WinDev\BupBoop>CTCC.exe

Usage :

 ctcc (-smp/-sfx/-ins/-mus) [outfile] (source data)

 Where the specific syntax depends upon the operating mode, all of which are

 listed below...

::Sample Pack Mode (-smp),

 ctcc -smp output.smp samples.txt

 All samples in the sample descriptor file must be stored in 8-Bit Signed PCM

 with a frequency between 1.0Hz and 65535.99Hz

::Sound Effect Mode (-sfx),

 ctcc -sfx samples.txt sfx_scripts.txt

 Generated sound effect files (*.sfx) will be stored in the same directory as

 sfx_scripts.txt, with one sound effect file per SASS sound effect definition.

::Instrument Pack Mode (-ins),

 ctcc -ins output.ins samples.txt instruments.txt

::Music Track Mode (-mus),

 ctcc -mus output.mus instruments.txt channel_0.txt [channel_1.txt] [...]

 Music written with more channels than available on a particular target will

 have them dropped during playback rather than at compilation.

C:\WinDev\BupBoop\SASS\DemoSFX>..\..\ctcc -sfx ..\CoreSamples.txt DemoSFX.txt

SFX Mode...

Parsing sample descriptor file : ..\CoreSamples.txt

Parsing macro script file : DemoSFX.txt

Saving sound effect binary to : Get.sfx

Saving sound effect binary to : Yoomp.sfx

Saving sound effect binary to : Bonk.sfx

Saving sound effect binary to : Slip.sfx

Saving sound effect binary to : Lift_Start.sfx

Saving sound effect binary to : Lift_Stop.sfx

Priority definitions saved to : DemoSFX.h

Total Sound Effects : 6

C:\WinDev\BupBoop\SASS\Samples>..\..\ctcc -smp ..\CoreSamples.smp ..\CoreSamples.txt

SMP Mode...

Parsing sample descriptor file : ..\CoreSamples.txt

Saving sample package to : ..\CoreSamples.smp

Success! 2294 Bytes written to : ..\CoreSamples.smp

Total Samples : 10, Included Files : 9

CoreTone Programmer’s Manual
Page 15

 In Instrument Pack mode CTCC requires three arguments, the first of which is the
destination file where the Instrument Package will be stored, the second indicates the Sample
Package to use, and the third is the SASS Instrument Script File.
 Building the included example macro instruments can be accomplished as follows :

 In Music mode, CTCC requires three or more arguments, the first of which indicates
where the generated Music Track will be stored, the second of which is the SASS Instrument
Scripts used in the piece, and the third and beyond contain the SASS Music Scripts for each
CoreTone channel. Any channel other than the first is optional, and if a piece of music requires
more than the total number of available channels on a particular CoreTone target, they will be
dropped at playback time.
 Building the included example song can be accomplished as follows :

C:\WinDev\BupBoop\SASS\DemoMusic>..\..\ctcc -mus DemoMusic.mus ..\CoreMacros.txt

 Lead_A.txt Lead_B.txt Bass.txt Perc.txt

MUS Mode...

Parsing macro script file : ..\CoreMacros.txt

Parsing music script file : Lead_A.txt

Parsing music script file : Lead_B.txt

Parsing music script file : Bass.txt

Parsing music script file : Perc.txt

Linking and saving music track to : DemoMusic.mus

Success! 203 Bytes written to : DemoMusic.mus

Total Tracks 4, Total Blocks : 7

C:\WinDev\BupBoop\SASS>..\ctcc -ins CoreMacros.ins CoreSamples.txt CoreMacros.txt

INS Mode...

Parsing sample descriptor file : CoreSamples.txt

Parsing macro script file : CoreMacros.txt

Saving instrument package to : CoreMacros.ins

Success! 648 Bytes written to : CoreMacros.ins

Total Macro Instruments : 10

CoreTone Programmer’s Manual
Page 16

►Core-SASS Music-Oriented Language

 The CoreTone Code Compiler (CTCC) uses an extension of the SASS language called
Core-SASS, which caters to the unique features of the CoreTone SoftSynth. A reference to the
general SASS language and its Core-SASS extensions is provided below :

○Constants

Values may be entered in decimal, hexadecimal, and binary using the following syntax :
 32 ; Decimal (No prefix)

 -32 ; Negative Decimal (Leading “-”)

 $20 ; Hexadecimal (Leading “$”)

 %100000 ; Binary (Leading “%”)

As CoreTone uses fractional-integer values (i.e. 16.16 or 8.8 precision math), a decimal
may be assigned to each value as follows :
 32.16 ; Decimal

 -32.16 ; Negative Decimal

 $20.10 ; Hexadecimal

 %100000.10000 ; Binary

The format of the decimal matches that of its leading integer. Values written without a
decimal are assumed to have one with value zero.

○Comments

Follow a semicolon “;” and span a single line :
 ; This is a comment, it will span the whole line

 as4 240 ; Comments may also follow commands and values

○Timing

All values quantifying time (note on, rests, waits, etc.) are given in CoreTone update
ticks, which are 240Hz by default. Using this, we can write the note sequence below :
 f.3 240 ; Play an F in the third octave for one second

 rest 80 ; Note off and rest for 1/3 second

 as5 160 ; Play an A sharp in the fifth octave for 2/3 second

○Sample Packages

Waveforms available for use by instruments and sound effects are stored in Sample
Packages which are created using a descriptor file in the format below :
;name - file Sf Bf [start] [end]

Pulse_06 : Pulse_06.raw 32000 2000

...

Each entry has a name, which is its identity for use by instruments and sound effects
when selecting a sample. The source file is where the sample’s waveform data will be
pulled from when generating a sample packages. Sf is the sampling frequency, i.e. the
samplerate of the input file. Bf is the sampled frequency, or the frequency of what was
recorded in the input file. Optional start (inclusive) and end (exclusive) offsets allow
selection of sample ranges within a file. This can be used to define multiple samples from
different regions of a single file.
All source data for sample packages must be stored as 8-Bit signed monophonic PCM.

○Macro Instruments and Sound Effects
As the decoding of instruments and sound effects are identical in CoreTone, their
definitions are also similar and both are classified as macros. Instruments are expected
to be used in music tracks under the control of the music playback routine. Sound effects
are available for playback at any time by the user or game routine. Therefore priorities
are exclusive to sound effects, while note offs and are only available to instruments.

CoreTone Programmer’s Manual
Page 17

Unlike many other SASS targets, CoreTone has no tuning parameter available to
instruments. They are instead autotuned when creating the sample package based upon
the value of Bf / Sf.
name priority ; <- Label

 volume value ; <- Header / Init

 frequency value

 sample name

 mode singleshot/looping [start] [end]

 {

 rest ticks ; <- Body

 volume value

 frequency value

 loop count

 ; (Loop Body)

 endloop

 noteoff

 end

 }

All definitions begin with a label, which contains a macro’s name and priority (if a sound
effect). Names are composed of one or more ASCII characters (such as “square,”
“explosion,” or “powpow”), are used to identify instruments within music scripts, and
generate equates for sound effects. Priorities are used only for sound effects and
represent the importance of the particular sound effect relative to both the music tracks
and other sound effects. For instrument definitions, the priority should be excluded.

Following the label is the definition’s header data. This specifies the initial state of the
instrument or sound effect through various parameter adjustment commands. Some
common parameter adjustment commands are sample, volume, and frequency.

The remaining portion of the definition is the body, which specifies how the sound will
change over time and is composed of one or more note, flow control, and parameter
adjustment commands within { Curly Braces }. Most of these are available for both
instruments and sound effects, but noteoff only applies to instruments and will have no
effect on sound effects.

As single-channel sound effects can quickly become a limiting factor in game audio
fidelity, CoreTone supports the definition of multi-channel sound effects. These resemble
a normal sound effect definition, except with a { Curly Brace } region immediately after
the label, containing one or more channel headers and bodies :
name priority ; <- Label

{

 volume value [adjustment] ; <- 1st Channel Header / Init

 frequency value [adjustment]

 sample name

 mode looping 0 64

 {

 rest ticks ; <- 1st Channel Body

 loop count

 ; (Loop Body)

 endloop

 end

 }

 volume value [adjustment] ; <- 2nd Channel Header / Init

 frequency value [adjustment]

 sample name

 mode singleshot

 {

 rest ticks ; <- 2nd Channel Body

 end

 }

CoreTone Programmer’s Manual
Page 18

}

Commands may be divided into three categories: note, parameter adjustment, and
flow control. Note commands control delays and note off actions. Parameter
adjustments control how the instrument or sound effect will actually create its sound,
these are also the only commands which may be used in the channel header area. Flow
control commands include loops and end markers. A basic command listing follows:

o noteoff,n : note off
Applicable only to instruments. Flags the portion instrument body following it as
the note off (or “release”) part of the script. If an instrument is playing and the
music script encounters a rest command, this area of the instrument body will
begin decoding on the next update cycle.
 ... ; When a rest command is encountered in

 noteoff ; the music script while an instrument

 rest 32 ; is playing, the instrument will start

 end ; executing the portion of its script

 ... ; directly following the noteoff command.

o rest,r ticks : rest
o wait,w ticks : wait

Pause for the specified number of ticks before advancing to the next command.
The instrument or sound effect will continue to play during this time.
 rest 14 ; Wait 14 ticks

 end ; Stop

o volume,v value [adjustment]: set the current volume
Set the channel volume to a value of -128 to 127, where larger absolute values
are louder and zero is silence. The adjustment field is an optional 8.8 precision
value which will be added to the current volume every driver tick. Negative values
from -1 to -128 will invert the waveform.
 volume 26 -2 ; Set amplitude to 26, -2 each tick

 rest 12 ; Wait 12 ticks, amplitude will be near zero

 end ; Stop

o frequency,f value [adjustment]: set the current frequency offset

Set the channel frequency offset, where larger values yield a larger phase
adjustment (higher frequency). The adjustment field is an optional 16.16
precision value which is added to the current frequency offset every update tick.
 frequency 0 1 ; Set frequency offset to 0, +1 each tick

 rest 16 ; Wait 16 ticks

 end ; Stop

o sample,s name: select sample

Select the sample from the supplied Sample Package which will be played over
the current channel. Only one sample may be selected per channel and will be
locked for the channel’s lifetime.
 sample sine ; Use the sine sample for this macro

 rest 5 ; Wait a bit for it to finish

 end ; Stop

o mode,m singleshot/looping [start] [end]: specify sample mode

Choose how the sample assigned to the channel will be played. Single shot
mode will play a sample until its end point, upon which the channel will be
silenced. Looping mode will repeatedly play a region of a waveform specified by
the start (inclusive) and end (exclusive) values, in samples.

CoreTone Programmer’s Manual
Page 19

Sample modes may be changed throughout the course of a channel’s life, and a
waveform can be “walked” by steadily advancing loop points. Additionally, single
shot mode will always begin from the currently playing offset within a sample. So
switching from looped mode to single shot can be convenient for note off routines
in samples which have a “baked in” decay.
 sample square ; Use the square sample...

 mode looping 0 16 ; ...and loop from 0(i) – 16(e)

 rest 5 ; Wait a bit for it to finish

 end ; Stop

 sample snare ; Use the snare drum...

 mode singleshot ; ...and play it straight through

 rest 120 ; Wait a bit for it to finish

 end ; Stop

o loop,l count : start of loop

Specifies the start of a loop, and the number of times it will repeat. If negative
values are used, the loop will continue indefinitely.
 ...

 loop -1 ; Repeat outer loop forever

 loop 10 ; Inner loop 10 times

 rest 6

 endloop

 endloop

 end ; Stop

o endloop,el : loop end

Specifies the end of a given loop.
 ...

 loop -1 ; Repeat forever

 rest 18

 endloop ; Marks end of above loop

 end ; Stop

o end,e : sound end

Stops decoding of the instrument or sound effect when reached, and frees the
given channel.
 ...

 end ; Stop

○Music Tracks
Music tracks are composed of one or more script blocks which contain commands
representing how and when to play instruments. An example listing is shown below :
name priority ; <- Main Block

{

 using instrument

 priority value

 pan left right

 mood value

 call name

 loop count

 ; (Loop Body)

 endloop

 rest ticks

 as3 ticks

 wait ticks

 end

}

name ; <- Sub Block

{

CoreTone Programmer’s Manual
Page 20

 ...

 return / break

}

All script blocks start with a label, which at minimum contain the block’s name. Each
music track must contain a single main block which is the first to be played and also
contains a starting priority in its label. Names are composed of one or more ASCII
characters and priorities are an integer value, with higher values indicating a more
important music track. Using a priority of zero will cause the music track to never decode.

Following the label, and enclosed between two { Curly Braces } are one or more
commands composing the block body. The basic command set may be divided into
three categories: notes, parameter adjustment, and flow control. Note commands
specify when to turn on and off a particular note (ala key on and key off). Parameter
adjustment commands allow control over which macro instrument will be used and how
it will be played. Flow control commands change how the SASS script will decode,
allowing for loops, calls to different music blocks, and termination of playback.

A basic command listing follows :

o Note Commands
A key on event at a given note may be specified with a three letter note
command, followed by a duration in driver ticks. The format is as follows :
 (Note Letter)(Natural, Sharp, or Flat)(Octave Number)

Note letters may be c, b, d, e, f, g, and a. Natural, Sharp, and Flat for the given

note may be specified using “.” (period), “s”, and “b” respectively. The octave

number may range from 0-9.
 ...

 c.4 60 ; C-Natural 4th octave for 60 ticks

 rest 10

 bs4 20 ; B-Sharp 4th octave for 20 ticks

 rest 10

 bb2 80 ; B-Flat 2nd octave for 80 ticks

 rest 10

 ...

o pitch,pt offset [adjustment] : set pitch offset and adjustment

Set the current 16.16 pitch offset and its optional adjustment each driver tick.
 ...

 as3 5 ; Start playing a note, wait five ticks

 pitch 0 0.16 ; INCREASE the frequency 0.16 counts / tick

 wait 20 ; After 20 ticks, it will be offset by

 pitch 0.240 0 ; 0.240 counts, hold it there...

 wait 5

 ...

o rest,r ticks : rest

Acts as a key off event if following a note command, or a general delay if used on
its own.
 ...

 as4 20

 rest 30 ; Key off, wait for 30 ticks

 ...

 rest 60 ; Wait for 60 ticks

 ...

CoreTone Programmer’s Manual
Page 21

o wait,w ticks : wait
Pauses decoding for the specified number of ticks. Useful for delays where note
off behavior is not desired.
 ...

 wait 60 ; Wait for 60 ticks

 ...

o using,u instrument : set current instrument
Select the instrument used for playback in the music track.
 ...

 using piano ; Using instrument “piano”

 g.3 20 ; The following notes will be played with

 rest 10 ; “piano,” with each note request

 b.3 20 ; specifying a key on, and each rest

 rest 10 ; indicating a key off.

 a.3 20

 rest 10

 ...

o pan,p left right : set current panning

Two 8-Bit values representing the panning of the channel in the left and right
speakers. These range from -128 to 127, where larger absolute values are louder
and zero is silence. Negative values from -1 to -128 will invert the waveform.
 ...

 using piano ; Using instrument “piano”

 pan $7f $00 ; Set panning to full volume on the LEFT

 as3 12 ; Play the note in the LEFT speaker

 rest 24

 pan $00 $7f ; Set panning to full volume on the RIGHT

 as3 12 ; Play the note in the RIGHT speaker

 rest 24

 ...

o priority,pr value : set track priority

Adjust the current playback priority of the music track. This may be useful to give
certain parts of a piece more or less importance relative to sound effects.
 ...

 priority 120 ; Set priority to 120

 ...

 priority 240 ; Set priority to 240 (higher)

 ...

o mood,m value : set mood flag

Sets the current mood flag to the supplied value, this may be read by the game

software using ct_getMood(), and used to adjust game behavior based upon

music activity. The mood flag is defaulted to zero (neutral) when a music track is
started or stopped.
 ...

 mood 13 ; Set mood flag to 13 (user-defined)

 ...

 mood 0 ; Set mood flag to 0 (neutral)

 ...

o loop,l count : start of loop
Specifies the start of a loop, and the number of times it will repeat. If negative
values are used, the loop will continue indefinitely.

CoreTone Programmer’s Manual
Page 22

 loop -1 ; Repeat outer loop forever

 loop 10 ; Repeat inner loop 10 times

 as4 20

 rest 20

 endloop

 gs3 30

 rest 20

 endloop

 end ; Stop

o endloop,el : loop end

Specifies the end of a given loop.
 loop -1 ; Repeat forever

 fs4 20

 rest 30

 call drumSolo

 endloop ; Marks end of above loop

 end ; Stop

o call,c blockLabel : call script block

Begin decoding a given script block with the name specified in blockLabel.
 ...

 call pianoSolo ; Call the script block below

 ...

}

pianoSolo

{

 ...

 return

}

o return,rt : return from called script block

Resume decoding from where a given script block was called.
 ...

 call pianoSolo

 ...

}

pianoSolo

{

 ...

 return ; Resume decoding after “call pianoSolo”

}

o break,b : pattern break

Returns all tracks (not just the one encountering the command) to the lowest
entry in their CALL stack. Effectively, all tracks will be returned to the “main”
script if they are not there already.
mainTrack 120

{

 ...

 call pianoSolo

 ...

}

pianoSolo

{

 ...

 call drumminThang

}

drumminThang

{

 ...

 break ; Resumes decoding after “call pianoSolo”

}

CoreTone Programmer’s Manual
Page 23

o end,e

Stops decoding of the music track and frees the channel
 ...

 end ; Stop

CoreTone Programmer’s Manual
Page 24

►PlayTone Auditioning Suite

 PlayTone is a Windows application for auditioning sample packages, macro instruments,
music tracks, and sound effects. The internal state of CoreTone’s patch and music decoders can
also be viewed in order to assist with SASS Script debugging.

 Output logging to a *.WAV file is supported and will capture all music and sound effects

played by the user. The SASS examples included with the BupBoop / CoreTone suite (located in

the ./SASS directory) may be loaded and listened to in PlayTone out of the box.

CoreTone playing some sound effects and music in PlayTone, through WinTone + DirectSound.

Channels and waveforms with a dominant amplitude in the left speaker will be colored RED, while those on the right will

be colored BLUE. If a channel is played evenly on both speakers it will appear PURPLE.

Panel Buttons :

 Open Sample Package (*.smp)

 Open Macro Instrument Package (*.ins)

 Open Music Track (*.mus)

 Start / Stop Output Log (*.WAV)

 Play Music Track

 Pause / Resume

 Stop Music Track

Helpful Shortcuts :

 Ctrl+P Open Sample Package (*.smp)

 Ctrl+M Open Macro Instrument Package (*.ins)

 Ctrl+O Open Music Track (*.mus)

 Ctrl+S Log Output (*.WAV)

 Ctrl+T Stop Logging

 Q Pause

 W Resume

 Space Play Music Track

 Ctrl+Space Stop Music Track

 Ctrl+K Stop All

CoreTone Programmer’s Manual
Page 25

○Getting Started

Upon running PlayTone, the user will be greeted by the window below which will await
further input through the menus, button panel, or accelerator key combinations.

 Before playing any music or sound effects, a Sample Package (*.smp) and Macro

Instrument Package (*.ins) must be loaded. If you have not built your own, two are included in

the ./SASS directory (./SASS/CoreSamples.smp and ./SASS/CoreMacros.ins).

 Once the Sample and Macro Instrument Packages have been loaded, PlayTone will
attempt to initialize the SoftSynth. If successful, its state will change from [Idle] to [Ready].

CoreTone Programmer’s Manual
Page 26

○Playing Music

Once both a Sample Package (*.smp) and Macro Instrument Package (*.ins) have

been loaded and the SoftSynth is running, PlayTone can load Music Tracks (*.mus). A demo

music track is included in ./SASS/DemoMusic/DemoMusic.mus.

 After loading a music track it may be played and stopped using the controls under the
Playback menu or pressing Space to play and CTRL+Space to stop.

 The music volume may be adjusted by using the trackbar on the left, useful for testing
fade-out times or balancing music amplitude with sound effects.

CoreTone Programmer’s Manual
Page 27

○Playing Sound Effects

As with Music Tracks, once both a Sample and Instrument Package have been loaded,

PlayTone will allow Sound Effects (*.sfx) to be loaded and played. This is accomplished using

the sound effect remote panel, located under the debug menu.

 Once the sound effect remote panel is open, a sound effect may be loaded by clicking on

the button to bring up the file selection dialog.

 Once loaded, a sound effect can be auditioned. The PLAY► and STOP■ buttons will

dispatch and stop instances of the sound effect, respectively. The PRI and PAN trackbars control

the importance of the sound effect and its stereo panning.

 It should be noted that panning a sound effect left or right will only change the dominant
playback speaker, sound effects will always be auditioned at full volume. As a precaution,
adjusting a sound effect’s priority stops any of its previously dispatched instances.

CoreTone Programmer’s Manual
Page 28

○Debugging

PlayTone allows the user to observe internal SoftSynth activity in order to simplify macro
and music script creation. The viewers for both are located under “Patches…” and “Music...” in
the debug menu.

 The patch activity viewer shows active macros for instruments and sound effects along
with their respective sampler settings.

CoreTone Programmer’s Manual
Page 29

 The music activity viewer operates similarly, showing each channel’s currently selected
macro instrument and any playing notes.

