
HuSound Programmer’s Manual
Page 1

HuSound 1.3cz
Macro instrument sound driver for the NEC PC-Engine / TurboGrafx-16

Care and Feeding Instructions

Written and Designed by: Osman Celimli

HuSound Programmer’s Manual
Page 2

◊Table of Contents

►What is HuSound? .. 3
○Licensing .. 3
○MCGenjin Primer .. 3
○Setting Up Your Development Environment .. 4
○Using HuSound in Your Software... 4

►Audio Channel Structure ... 7

►Instruments and Sound Effects ... 9
○Sound Effects Packages .. 9
○Sound Effect Headers .. 9
○Instrument Headers .. 9
○Instrument and Sound Effect Scripts .. 9

►Music ... 11
○Track Packages .. 11
○Individual Tracks / Songs ... 11
○Music Script .. 12

►PCM Samples ... 13

►HuSound Code Compiler (HSCC) ... 14

►PCE-SASS Music-Oriented Language .. 16
○Constants ... 16
○Comments .. 16
○Timing ... 16
○Instruments and Sound Effects .. 16
○Music Tracks .. 19

►HuListen Auditioning Suite .. 24

HuSound Programmer’s Manual
Page 3

►What is HuSound?

HuSound is a music and sound effects driver for NEC’s PC-Engine / TurboGrafx-16
console based upon macro instruments. This allows the instruments used in a given composition
to have all the complexities of sound effects as opposed to just ADSR envelopes. Internally, the
driver treats both instruments and sound effects as a single entity, the only difference being that
instruments are played with a frequency offset (i.e. their “note”).

Other features include 6.992KHz PCM playback on any of the PC-Engine’s six hardware
channels and LFSR / Noise mode on channels five and six. Stereo panning and attenuation may
be used to enhance both music tracks and sound effects during playback. The base driver tick is
tied to the vertical blank interrupt (usually 60Hz). Also notable is that HuSound was written
specifically for use with the MCGenjin memory mapper, natively supporting its extended data
capacity and region switching capability.
 Ville Helin’s WLA-DX is the chosen assembler for HuSound and its included auditioning
program, HuListen. However, you are free to modify HuSound for use with other development
environments. Please note that the authors are not responsible for any personal distress, harm,
or destruction of property while using HuSound; however unlikely they may be.

○Licensing

 As of version 1.2cz, HuSound is available under the zlib license, whose terms and
conditions are listed below in full and made available in all three major component files

(./HuSound/HuSound.asm, ./HuListen/HuListen.asm, and ./HSCC/hscc.c):

(C) 2014-2015 Osman Celimli

 This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages

 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

○MCGenjin Primer
 MCGenjin is a PC-Engine / TurboGrafx-16 memory mapper designed to support dynamic
region switching, extended game capacity (up to eight megabytes as of writing), and two user
device selections for components such as additional work RAM. Its formal documentation may be

found in the .\HuListen\EQU_MCG.asm file in this package. HuListen has been written to use

this mapper which is available in hardware or via emulation (fully supported in Mednafen).
 While this means that the HuSound libraries natively support several megabytes of audio
data, there will be some new concepts for the programmer to use in his or her game software.
The most important of which is the 4-Byte MCGenjin Address. These are used throughout the
driver and its interfaces to the user to locate and access data, and are arranged as follows:

Byte Equate Purpose

0 LO Low Address

1 HI High Address

2 BANK HuC6280 Bank Number

3 MCMAP MCGenjin Page

HuSound Programmer’s Manual
Page 4

Where the LO and HI address specify the data’s location after being mapped in to MPR4
($8000 - $9FFF), the BANK specifies which 8KB HuC6280 bank the data are located in, and the
MCMAP indicates which 256KB MCGenjin page the data are in. For example, if a piece of data
were located at $42800 from the start of the cartridge it would be in MCMAP $01 ($42800 /
256KB), BANK $02 (($42800 % 256KB) / 8KB), and LO,HI $0800 ($42800 % 8KB).

○Setting Up Your Development Environment
 The contents of this folder may be extracted wherever you like. For convenience I

recommend a folder close to root, such as C:\PCE\ or C:\DEV\PCE. You will need to supply a

copy of wla-huc6280.exe and wlalink.exe in a .\WLA subfolder. After completing this step

your development directory should have the following residents:

File / Folder Description

.\HSCC\ HuSound Code Compiler (PCE-SASS)

.\HuListen\ HuListen Auditioning Suite

.\HuSound\ HuSound Driver

.\WLA\ WLA-DX HuC6280 Assembler and Linker

.\HuSound Programmer’s Manual.pdf This Document

You should now be able to build the included HuListen Auditioning Suite and its included

demo sound effects and music. Navigate to the .\HuListen folder in Windows Command

Prompt, run the HuMake.bat script, and you should be greeted with the following:

 The newly built binary will be available in .\HuListen\BUILD\HuListen.pce, which

may be written to an MCGenjin 4MB Plus Development Card or run in an emulator. The operating
details of the HuListen Auditioning Suite are available on page 24.

○Using HuSound in Your Software

The most important aspect of a sound driver is usually generating sound. However, in order
to get HuSound up and running with your current project you’ll need to observe the following
requirements:

 Hardware
o HuC6280 TIMER & TIMER IRQ

Required if the user wishes to play PCM Samples.

 Required Definitions / Equates

HuSound Programmer’s Manual
Page 5

o HUSOUND_CHANNELS

How many channels (out of the six present in the PC-Engine hardware, starting
from the first channel) that the HuSound Library will have control over. This
should be set to 6 unless you’d like to merge HuSound with a driver of your own.

o HUSOUND_STACKLEN

The music and sound effect script decoder stack length. This indicates how many
CALLs and LOOPs you can use in your scripts. A value of 4 is recommended.

o HUSOUND_REQLEN

Specifies the depth of the request queue for sound effects. Increasing this allows
more sound effects to be queued up by the user in between driver ticks. A value
of 8 is the default, but this can be lowered to 4 for most software.

o HUSOUND_ZP_BASE and HUSOUND_MEM_BASE

Base addresses for HuSound’s variables in the ZeroPage and Work RAM
respectively.

o .\HuListen\EQU_PCE.asm
o .\HuListen\EQU_MCG.asm
o .\HuListen\ZP_SYS.asm
o .\HuListen\SUB\System*

While HuSound is fairly modular, it is still dependent on many of the hardware
definitions, macros, and system calls present in these files.

 Included Files
o .\HuSound\HuSound.asm

o .\HuSound\HuSFX.asm

o .\HuSound\HuMusic.asm

o .\HuSound\HuSample.asm

Driver code and its subcomponents, these should be placed in a fixed bank.
o .\HuSound\ZP_HuSound.asm

o .\HuSound\VAR_HuSound.asm

ZeroPage and Work RAM variable definitions.

 Consumables / Sound Data
HuSound accepts four types of consumables: Sound Effects Packages, Music Tracks,
Music Track Packages, and PCM Sample Packages. Any one of these may be omitted if
they are not required by your project, and all of them excluding individual music tracks
must be configured prior to initialization time. You may let the driver know of a
consumable’s existence by setting one of the variables below to a value other than zero:

o HuSFX_PackBase

4-Byte MCGenjin Address indicating the base of the Sound Effects Package to
use. This has no alignment restrictions and the data may spread over several
banks.

o HuMusic_PackBase

4-Byte MCGenjin Address indicating the base of the Music Track Package to
use. This has no alignment restrictions and the data may spread over several
banks.

o HuSample_DirBase

4-Byte MCGenjin Address indicating the starting address of the PCM Sample
Package. This requires its first several bytes (encompassing the PCM directory)
to be located within the same bank, so it is recommended just to make this
resource bank-aligned.

 Initializing and Running
After configuring your consumables as described above, you can initialize the driver by
performing a jsr to HuSound_Init. This should be performed a single time before your

vertical blank interrupt has been enabled and your main game routine has begun. Once

HuSound Programmer’s Manual
Page 6

you have configured the driver it may be run once per frame in your vertical blank
interrupt handler by performing two subroutine calls:

o HuSound_Writeback

This performs all update writes to the PC-Engine’s sound hardware. This should
be called as early in the interrupt handler as possible in order to guarantee
consistent timing.

o HuSound_Main

This performs all sound effects and music decoding and is not time-critical.
Therefore it can be done after more important things such as data or palette
transfers.

 Commonly Used Subroutines
Once HuSound has been initialized and is executing once every vertical blank, the
following subroutines will be useful to the programmer:

o HuSound_Pause

o HuSound_UnPause

Pause and silence or unpause and resume all driver activity.
o HuSound_StopAll

Cease playback of any currently decoding music, sound effects, or samples.

o HuSFX_Play

Request playback of the sound effect whose number is in A with panning whose

value is in Y.
o HuSFX_Stop

Cease playback any sound effect whose priority is in A.
o HuSFX_StopAll

Cease playback of any sound effects. Music and any currently active instruments
will be left unaltered.

o HuMusic_TrackReq

Request playback of the music track in the currently configured music track

package whose number is in A. This should be the primary method of music

playback used in most software.
o HuMusic_Play

Request playback of the music track whose 4-Byte MCGenjin Address is in

HuMusic_SongBase. This should only be used by software which requires

dynamically received music data, such as a “download music from x” program.
o HuMusic_Stop

Cease playback of any currently decoding music track.
o HuMusic_ReqAtten

Request a change in the current music attenuation level supplied in A, this may

range from 0 (no attenuation, loudest) to 15 (max attenuation, silent).

o HuSample_PlaySimple

Play the PCM sample whose number is in A over the first audio channel.
o HuSample_StopSimple

Cease playback of any sample whose playback was started using the routine
above.

HuSound Programmer’s Manual
Page 7

►Audio Channel Structure

The PC-Engine contains six hardware audio channels with mostly identical features. All
of them may be used to playback unique 32 Sample @ 5-Bit waveforms or stream PCM
Samples, the last two also feature an alternate LFSR / Noise generation mode, and the first two
may be paired to generate simple frequency modulation (this is unsupported by HuSound as of

writing). In short, any channel can play back a waveform or PCM Sample. But only channels 4

and 5 may be used to play white noise.

Channel Waveform Mode PCM Playback LFSR / Noise LFO

0 Y Y N Y/Unsupported

1 Y Y N Y/Unsupported

2 Y Y N N

3 Y Y N N

4 Y Y Y N

5 Y Y Y N

PC-Engine Channel Features

 That hardware note aside, for all intents and purposes each channel has the properties
listed below:

 Priority
The current priority of the instrument or sound effect playing in the channel. When sound
effects and instruments compete for a given audio channel, those with higher priorities
win out. A priority of zero indicates the channel is currently free (no one is using it).

 Mode

Indicates whether the channel is playing a waveform (WAVE), being used for PCM

playback (PCM), or generating white noise (NOISE).

 Frequency

A 12-Bit (WAVE) or 5-Bit (NOISE) divider value indicating what frequency the channel will

be clocked at. PCM Samples have no inherent frequency and are fixed at a 6.992KHz
playback rate. The final frequency is actually the sum of several sub-frequencies:

o Base
16.8-Bit precision value representing the current base frequency of the channel.
This is ignored (zeroed) when playing a sound effect, but is used for the note
frequency in instrument decoding.

o Pitch and Pitch Adjustment
16.8-Bit precision value representing the current offset from the base frequency
and how much to adjust this offset each driver tick. This is ignored (zeroed) when
playing a sound effect, but is used for detuning and pitch bends in instruments.

o Offset and Offset Adjustment
16.8-Bit precision value representing the offset from the sum of the base
frequency and pitch. This is the sole frequency used by sound effects, but is
used by notes for variation from their base frequency.

Taking the above into account, we can calculate the divider value as follows:

 For Instruments
pitch += pitchAdjustment;

offset += offsetAdjustment;

divider = base + pitch + offset;

 For Sound Effects
offset += offsetAdjustment;

divider = offset;

The final clock rate may then be computed based upon the mode:
 For Instruments

frequency = 3.58MHz / divider;

HuSound Programmer’s Manual
Page 8

 LFSR / Noise
frequency = 3.58MHz / (64 x divider);

 Volume and Volume Adjustment

An 8.8 precision value of which 5-Bits are used to indicate the current volume for WAVE or

NOISE mode. Each driver tick the volume adjustment value is added to the current

volume value, allowing for simple amplitude modulation. Channels in PCM mode have a

fixed volume at its maximum of $1F (31). Their amplitude may be controlled using the

panning registers.

 Panning
An 8-Bit value representing the panning of the channel. Bits 7-4 are the attenuation for

the left speaker, and bits 3-0 are for the right speaker. 1111 is loudest, 0000 is off.

 Writeback Disabling
HuSound will release control of any channel flagged as having writebacks disabled.
Music and sound effects will continue to decode normally, but will not touch the actual
audio hardware. This is useful for temporarily borrowing the sound hardware for other
uses. For example, the PCM playback routines set a channel’s writeback disable flag
before taking it over.

HuSound Programmer’s Manual
Page 9

►Instruments and Sound Effects

In HuSound, instruments and sound effects have been merged into a single entity. This
allows the audio programmer to not only create elaborate instruments with all the features of
sound effects, but also reduces driver size and complexity.

While the instruments and sound effect scripts are decoded identically, they are not
stored in the same data structures. Sound effects live inside the Sound Effects Package, while
the instruments for a particular music track are always stored along with it. The headers prefacing
individual sound effects and instruments differ as well. A description of this formatting and
encoding follows.

○Sound Effects Packages

 The current sound effect package's base address is stored in HuSFX_PackBase, and

must reside in ROM. A well behaved package will be formatted as shown below:

 Offset Contents

 0 ‘S’

 1 ‘F’

 2 ‘X’

 3 Number of Sound Effects

 4+

 \

 0-3 Start Addresses (Relative Lo, Hi, Bank, Map)

 (4 * (Number of Sound Effects + 1))

 \

 Sound Effects

○Sound Effect Headers

 Sound effects may be composed of one to six channels of script data prefaced by a small
header and descriptors for each of their channels. Since the PC-Engine does not have uniform
capabilities across all its audio channels, each channel descriptor must include a "requirements"

tag indicating whether or not the channel script will need NOISE mode.

 Offset Contents

 0 Priority

 1 Total Channels (1-6)

 2+ Channel Script Descriptors:

 \

 0 Channel Requirements ($00 = WAVE / PCM, $FF = NOISE)

 1-4 Start Address (Relative Lo, Hi, Bank, Map)

 (2 + (5 * Total Channels))

 \

 Sound Effect Data / Script

○Instrument Headers

 Instruments are limited to only a single channel and thus discard the sound effect header
shown above and instead start with a 4-Byte relative (to the instrument block base within a given
music track) address of the instrument's note off portion of the script, which is then followed by
the data / script itself.

○Instrument and Sound Effect Scripts

Following the instrument or sound effect’s header are the scripts for each of its channels.
This script is a simple bytecode with commands for adjusting the properties of the audio channel

HuSound Programmer’s Manual
Page 10

and controlling the execution path of the sound script itself. The commands, their format, and
operations are listed below:

 0: HUSFX_END()

Close the sound effect decoding process and silence the channel.
 1: HUSFX_DELAY(Delay)

Delay the decoding of the sound effect script by the given count in ticks.
 2: HUSFX_LOOP_START(Loop Count)

Set the start of a looping region and define how many counts the loop will last. Negative
loop counts are considered infinite.

 3: HUSFX_LOOP_END()

Decrement the current loop count, branching back to the loop start if the loop count is
greater than zero or negative (infinite).

 4: HUSFX_WAVEFORM(Waveform Data / 32 Bytes of 5-Bit uSamples)

Put the channel into WAVE mode and assign it the 32-Bytes of 5-Bit unsigned waveform

data included in the stream.
 5: HUSFX_SAMPLE(Sample Number)

Put the channel into PCM mode and start playback of the specified sample.
 6: HUSFX_LFSR()

Put the channel in NOISE mode. If this functionality is not supported on the currently
decoding channel, the command will be ignored.

 7: HUSFX_FREQUENCY(Frequency Lo, Hi, Adjustment Lo, Hi, De)

Set the frequency offset and frequency offset adjustment for this channel. The decimal of
the frequency offset is cleared.

 8: HUSFX_VOLUME(Volume, Volume Adjustment Lo, De)

Set the volume and volume adjustment for this channel.

HuSound Programmer’s Manual
Page 11

►Music

Music, like sound effects and instruments, uses a simple scripting language. Instruments
may be played for various lengths of time with specified frequency offsets, pitch slides, and
panning. Looping is also supported, and as with sound effects, the maximum loop depth is

configurable by adjusting HUSOUND_STACKEN. Infinite loops as applicable in sound effects are

identical in music scripts. Script patterns/subroutines may also be called and returned from, with
the same depth limit as loops. PCM sample cues may be used in any channel, allowing playback
of 6.992KHz samples in time with music.
 As the PC-Engine has six audio channels, each music script is composed of up to six
voices, all of which have a priority which is adjustable over the course of the music script’s life.
This allows tracks of music to become more or less important than the sound effects competing
with them for the hardware. By specifying a priority of zero, a music script is stopped, so a piece
of music which does not need all six channels may use less.

Two data structures are used to store music: songs and track packages (collections of
songs). While playback of individual songs is possible, it is recommended that all songs be
combined into a track package. The instruments for a particular music track are packed along
with it. While the music data format allows the instruments to be located virtually anywhere, the
included SASS compiler (HSCC) places them at the end of the music track.

○Track Packages

 The current track package's base address is stored in HuMusic_PackBase, and must

reside in ROM. A well behaved track package will be formatted as shown below:

 Offset Contents

 0 ‘T’

 1 ‘R’

 2 ‘K’

 3 Number of Songs / Tracks

 4+

 \

 0-3 Song Start Addresses (Relative Lo, Hi, Bank, Map)

 (4 * (NumTracks + 1))+

 \

 Song Data

○Individual Tracks / Songs

 The current song's base address is stored in HuMusic_SongBase, which will

automatically change when using the track package playback functions. Note that while Track
Packages (and their included songs) are required to fall in the MCGenjin swappable ROM region,
individual songs may be placed in memory arbitrarily. Like a track package, a song also begins
with a header whose format is given below:

 Offset Contents

 0 ‘M’

 1 ‘U’

 2 ‘S’

 3 Number of Instrument Definitions

 4-7 Address of Instrument Table (Relative Lo, Hi, Bank, Map)

 8+ Channel Script Descriptors:

 \

 0 "C"

 1-4 Start Address (Relative Lo, Hi, Bank, Map)

 5 Initial Priority (0 if the channel is unused)

 (8 + (6 * 6))+

HuSound Programmer’s Manual
Page 12

 \

 Music Data

○Music Script
 Following a music track’s header are its music scripts, of which there may be up to six.
The scripting commands are made up of one byte blocks and are similar to those of sound
effects. The commands, their format, and descriptions of their operations are listed below:

 0: HUMUSIC_SET_PRIORITY(Priority)

Set the music track's current playback priority. Setting the priority to zero will terminate
the decode process.

 1: HUMUSIC_SET_PANNING(Panning)

Set the music track's current stereo panning. The one byte panning value is in the format

%LLLLRRRR, where larger values indicate greater amplitude. So a pan of $F0 would yield

the loudest volume through the left speaker.
 2: HUMUSIC_DELAY(Delay)

Delay the track's decoding for the specified count in ticks.
 3: HUMUSIC_LOOP_START(Loop Count)

Set the start of a looping region and define how many counts the loop will last. Negative
loop counts are considered infinite.

 4: HUMUSIC_LOOP_END()

Decrement the current loop count, branching back to the loop start if the loop count is
greater than zero or negative (infinite).

 5: HUMUSIC_CALL(Dest Lo, Dest Hi, Dest Bank, Dest Map)

Call ("jsr") the music script at the supplied relative address. The target address is equal

to Dest + Song Base Address.
 6: HUMUSIC_RETURN()

Return ("rts") from the current music script position to the command after the last CALL

performed.
 7: HUMUSIC_BREAK()

Return ("rts") all channels (not just the current one) to the lowest return address found

in their pattern CALL stack, effectively bringing all channels back to their "main" script.
 8: HUMUSIC_PITCH(Pitch Lo, Hi, Pitch Adjust Lo, Hi, De)

Set the current pitch offset and adjustment rate.
 9: HUMUSIC_NOTE_ON(Instrument, Frequency Lo, Hi)

Start playing the specified instrument at the given base frequency.
 10: HUMUSIC_NOTE_OFF()

Have the currently playing instrument (if any) move to the note off portion of its script.
 11: HUMUSIC_SAMPLE(Sample Number)

Start playing the specified PCM sample.

HuSound Programmer’s Manual
Page 13

►PCM Samples

 HuSound supports playback of up to six PCM Samples (one for each of the hardware
channels) simultaneously through requests from sound effect scripts or music scripts. Playback in

the first channel may also be accomplished through a call to HuSample_PlaySimple, with the

sample number in A. Samples are required to be stored as 5-Bit Unsigned Monophonic PCM @
6.992KHz, and are kept together in a PCM Sample Package. This begins with a sample directory
which is arranged in the following format:

 Offset Contents

 0 ‘P’

 1 ‘C’

 2 ‘M’

 3 Number of Entries

 4+ 8-Byte PCM Descriptors:

 \

 0 "X"

 1-4 Start Address (Relative Lo, Hi, Bank, Map)

 5-7 Stream length (Lo, Mid, Hi)

The directory must not cross a bank boundary (at its max size of 256 entries, the

directory will be 2052 bytes), and it's recommended to just keep it bank aligned. PCM streams
following the directory have no alignment or boundary restrictions, but must not exceed a
maximum size of 8MB.

HuSound Programmer’s Manual
Page 14

►HuSound Code Compiler (HSCC)

 The HuSound Code Compiler (HSCC) generates both Sound Effect Packages and Music
Tracks from textual source files written in a music-oriented programming language called Sound
ASSembler (SASS). Two syntaxes are used, one for instrument and sound effect definitions, the
other for music tracks. HSCC can also organize several Music Tracks into Track Packages and
create PCM Sample Packages from 8-Bit Unsigned Monophonic Samples @ 6.992KHz.

 HSCC is a commandline application and operates in four modes: Sound Effects, Music,
Track Package, and PCM. Running HSCC with no parameters yields the following response:

 In Sound Effects mode, HSCC requires two filenames: the first of which indicates where
the generated Sound Effects Package will be stored and the second of which is the file containing
the SASS Sound Effects Scripts to parse. A third file will be generated automatically in the same
directory as your output file which contains equates for all the sound effects and their priorities.

Building the included example sound effects file can be accomplished as follows:

 In Music mode, HSCC requires anywhere from three to eight arguments, the first of which
indicates where the generated Music Track will be stored, the second of which is the file
containing the SASS Instrument Scripts to parse, and the third through eighth contains the SASS
Music Scripts to parse for each of the six channels on the PC-Engine. Any channel other than the
first is optional, and if a piece of music requires less than the total of six hardware channels, the
respective files may be omitted from the argument list.
 Building the included example music file can be accomplished as follows:

C:\PCE\HSCC>hscc

Usage: hscc [-sfx/-mus/-pak/-pcm] outfile [source data]

SFX: hscc -sfx output.sfx scripts.txt

 An equates file with the names and numbers of your sound

 effects will be created in the same directory as your output

 file and may be included in a WLA-DX project.

MUSIC: hscc -mus output.mus instruments.txt channel_0.txt

 [channel_1.txt] [...]

 Note that the argument numbers do correspond to the

 respective channels on the PC-Engine.

PACK: hscc -pak output.trk song_0.mus [song_1.mus] [...]

 A maximum of 255 songs may be included in one track pack.

PCM: hscc -pcm output.pcm sample_0.raw [sample_1.raw] [...]

 Each included file must be an 8-Bit unsigned PCM stream.

C:\PCE\HuListen\SASS>..\..\HSCC\HSCC -sfx SFXPAK.bin TEST_SFX.txt

SFX Mode...

A total of 7 SFX were found

The current SFX binary is : 804 bytes

Saving SFX binary to : SFXPAK.bin

Saving SFX equates to : SFXPAK.equ

C:\PCE\HuListen\SASS\DEMO_MUS>..\..\..\HSCC\HSCC -mus DEMO_MUS.mus Instruments.txt

0_LEADHI.txt 1_LEADLO.txt 2_BACK.txt 3_BASS.txt 4_PERCHI.txt 5_PERCLO.txt

MUS Mode...

A total of 11 instruments were found

The current instrument table is : 817 bytes

The current MUS binary is : 1177 bytes

Saving music binary to : DEMO_MUS.mus

HuSound Programmer’s Manual
Page 15

 In Track Package Mode, HSCC requires two or more arguments, the first of which
indicates where the generated Track Package will be stored, and the second and above
argument(s) are the Music Tracks to add to the Track Package.
 Creating a Track Package which includes the HuSound Driver and HSCC Compiler test

track (.\HuListen\SASS\TEST_MUS\TEST_MUS.mus) and the HuSound Demo Track

(.\HuListen\SASS\DEMO_MUS\DEMO_MUS.mus) can be accomplished as follows:

 In PCM Mode, HSCC requires two or more arguments, the first of which indicates where
the generated PCM Sample Package will be stored, and the second and above argument(s)
indicate which PCM Samples to add to the package. The supplied PCM Samples must be in
RAW 8-Bit Unsigned Monophonic PCM @ 6.992KHz. HSCC will automatically convert these to 5-
Bit granularity before inclusion in the PCM Sample Package.
 Creating a PCM Sample Package using various RAW PCM Samples (not included) may
be accomplished as follows:

C:\PCE\HuListen\SASS>..\..\HSCC\HSCC -pak MUSPAK.bin .\TEST_MUS\TEST_MUS.mus

.\DEMO_MUS\DEMO_MUS.mus

The current PAK binary is : 1816 bytes

Saving track package to : MUSPAK.bin

C:\PCE\HuListen\SASS>..\..\HSCC\HSCC -pcm PCMPAK.bin ..\..\Samples\RZ1_Kick.raw

..\..\Samples\RZ1_Snare.raw ..\..\Samples\RZ1_TomH.raw ..\..\Samples\RZ1_TomM.raw

..\..\Samples\RZ1_TomL.raw ..\..\Samples\RAP_Snare.raw ..\..\Samples\PS2_Snare.raw

..\..\Samples\S3_Snare.raw

PCM Mode...

The current PCM binary is : 12346 bytes / 1.765732 seconds

Saving PCM binary to : PCMPAK.bin

HuSound Programmer’s Manual
Page 16

►PCE-SASS Music-Oriented Language

 The HuSound Code Compiler (HSCC) uses an extension of the SASS language called
PCE-SASS, which caters to the unique features of the PC-Engine sound hardware and the
HuSound driver. A reference to the general SASS language and its PCE-SASS extensions is
provided below:

○Constants

Values may be entered in decimal, hexadecimal, and binary using the following syntax:
 32 ; Decimal (No prefix)

 -32 ; Negative Decimal (Leading “-”)

 $20 ; Hexadecimal (Leading “$”)

 %100000 ; Binary (Leading “%”)

As HuSound uses fractional-integer values (i.e. 16.8 or 8.8 precision math), a decimal
may be assigned to each value as follows:
 32.16 ; Decimal

 -32.16 ; Negative Decimal

 $20.10 ; Hexadecimal

 %100000.10000 ; Binary

The format of the decimal matches that of its leading integer. Values written without a
decimal are assumed to have one with value zero.

○Comments

Follow a semicolon “;” and span a single line:
 ; This is a comment, it will span the whole line

 as4 60 ; Comments may also follow commands and values

○Timing

All values quantifying time (note on, rests, waits, etc.) are given in 60Hz HuSound driver
ticks. Using this detail we can write the note sequence below:
 f.3 60 ; Play an F in the third octave for one second

 rest 20 ; Note off and rest for 1/3 second

 as5 40 ; Play an A sharp in the fifth octave for 2/3 second

○Instruments and Sound Effects
As the decoding of instruments and sound effects is identical in HuSound, their
definitions are also similar. Instruments are expected to be used in music tracks under
the control of the music playback routine. Sound effects are available for playback at any
time by the user or game routine. Therefore priorities are exclusive to sound effects,
while note offs and tuning are only available to instruments.
name priority ; <- Label

 volume value ; <- Header / Init

 frequency value

 wave waveform

 noise

 sample number

 tuning value

 {

 rest ticks ; <- Body

 volume value

 frequency value

 loop count

 ; (Loop Body)

 endloop

 noteoff

 end

 }

HuSound Programmer’s Manual
Page 17

All definitions begin with a label, which contains its name and priority (if a sound effect).
Names are composed of one or more ASCII characters (such as “square,” “explosion,” or
“powpow”), are used to identify instruments inside of music scripts, and generate equates
for sound effects. Priorities are used only for sound effects and represent the importance
of the particular sound effect relative to both the music tracks and other sound effects.
For instrument definitions, the priority should be excluded.

Following the label is the definition’s header data. This specifies the initial state of the
instrument or sound effect through various parameter adjustment commands. Some
common parameter adjustment commands are volume, frequency, and tuning. Tuning
is a special case, as it is only used for instruments, and ignored for sound effects.

The remaining portion of the definition is the body, which specifies how the sound will
change over time and is composed of one or more note, flow control, and parameter
adjustment commands within { Curly Braces }. Most of these are available for both
instruments and sound effects, but noteoff only applies to instruments, and will have no
effect on sound effects.

As single-channel sound effects can quickly become a limiting factor in game audio
fidelity, HuSound supports the definition of multi-channel sound effects. These resemble
a normal sound effect definition, except with a { Curly Brace } region immediately after
the label, containing one or more channel headers and bodies:
name priority ; <- Label

{

 volume value [adjustment] ; <- 1st Channel Header / Init

 frequency value [adjustment]

 noise

 {

 rest ticks ; <- 1st Channel Body

 loop count

 ; (Loop Body)

 endloop

 end

 }

 volume value [adjustment] ; <- 2nd Channel Header / Init

 frequency value [adjustment]

 wave waveform

 {

 rest ticks ; <- 2nd Channel Body

 end

 }

}

Commands may be divided into three categories: note, parameter adjustment, and
flow control. Note commands control delays and note off actions. Parameter
adjustments control how the instrument or sound effect will actually create its sound,
these are also the only commands which may be used in the channel header area. Flow
control commands include loops and end markers. A basic command listing follows:

o noteoff,n : note off
Applicable only to instruments. Flags the portion instrument body following it as
the note off (or “release”) part of the script. If an instrument is playing and the
music script encounters a rest command, this area of the instrument body will
begin decoding on the next update cycle.
 ... ; When a rest command is encountered in

 noteoff ; the music script while an instrument

 rest 8 ; is playing, the instrument will start

 end ; executing the portion of its script

 ... ; directly following the noteoff command.

HuSound Programmer’s Manual
Page 18

o rest,r ticks : rest
o wait,w ticks : wait

Pause for the specified number of ticks before advancing to the next command.
The instrument or sound effect will continue to play during this time.
 rest 14 ; Wait 14 ticks

 end ; Stop

o volume,v value [adjustment]: set the current volume
Set the channel volume to a value of 0-31, where larger values are louder. The
adjustment field is an optional 8.8 precision value which will be added to the
current volume every driver tick.
 volume 26 -2 ; Set amplitude to 26/31, -2 each tick

 rest 12 ; Wait 12 ticks, amplitude will be near zero

 end ; Stop

o frequency,f value [adjustment]: set the current frequency offset

Set the channel frequency offset, where larger values yield a larger divider (lower
frequency). The adjustment field is an optional 16.8 precision value which will be
added to the current frequency offset every driver tick.
 frequency 64 8 ; Set frequency offset to 64, +8 each tick

 rest 16 ; Wait 16 ticks

 end ; Stop

o wave,wv waveform: switch to WAVE mode, using the supplied waveform.

Places the channel into WAVE mode and uses the 32 supplied values each

ranging from 0-31 as the new waveform to be played.
 ...

 wave 16,19,22,24,27,29,30,30,31,30,30,29,27,24,22,19,16,13,10,8,5,3,1,1,0,1,1,3,5,8,10,13

 ... ; ^ Set the current waveform to a sinusoid

o noise,no: switch to NOISE mode.

Places the channel into NOISE mode.
 ...

 noise

 ...

o sample,s number: switch to PCM mode, playing the specified sample.

Place the channel into PCM mode and begin playback of the specified PCM

Sample in the current PCM Sample Pack. After the sample has finished playing,
the channel will return to its previous mode.
 sample 2 ; Start playing sample #2

 rest 5 ; Wait a bit for it to finish

 end ; Stop

o tuning,t value: specify instrument tuning

Instrument-only command specifying the tuning of the current instrument when
playing notes. The value corresponds to the period of the currently assigned
waveform. For example, a 32-Sample long sawtooth waveform would require a

tuning of 32.0. However, a waveform with the first 16-Samples representing a

square pulse and the next 16 samples a sine would have a tuning of 16.0 (since

the value reflects waveform period, not total sample count). The instrument may

be detuned by using decimal values such as 31.6 or 8.2.
 ... ; The configured sinusoid has a period of 32 Samples...

 wave 16,19,22,24,27,29,30,30,31,30,30,29,27,24,22,19,16,13,10,8,5,3,1,1,0,1,1,3,5,8,10,13

 tuning 32.0 ; Giving it a period of 32.0

 {

 ...

HuSound Programmer’s Manual
Page 19

o loop,l count : start of loop
Specifies the start of a loop, and the number of times it will repeat. If negative
values are used, the loop will continue indefinitely.
 ...

 loop -1 ; Repeat outer loop forever

 loop 10 ; Inner loop 10 times

 rest 6

 endloop

 endloop

 end ; Stop

o endloop,el : loop end

Specifies the end of a given loop.
 ...

 loop -1 ; Repeat forever

 rest 18

 endloop ; Marks end of above loop

 end ; Stop

o end,e : sound end

Stops decoding of the instrument or sound effect when reached, and frees the
given channel.
 ...

 end ; Stop

○Music Tracks
Music tracks are composed of one or more script blocks which contain commands
representing how and when to play instruments, samples, or sound effects. A listing of
the format structure is shown below:
name priority ; <- Main Block

{

 using instrument

 sample number

 priority value

 pan value

 call name

 loop count

 ; (Loop Body)

 endloop

 rest ticks

 as3 ticks

 wait ticks

 end

}

name ; <- Sub Block

{

 ...

 return / break

}

All script blocks start with a label, which at minimum contain the block’s name. Each
music track must contain a single main block which is the first to be played and also
contains a starting priority in its label. Names are composed of one or more ASCII
characters and priorities are an integer value, with higher values indicating a more
important music track. Using a priority of zero will cause the music track to never decode.

Following the label, and enclosed between two { Curly Braces } are one or more
commands composing the block body. The basic command set may be divided into

HuSound Programmer’s Manual
Page 20

three categories: notes, parameter adjustment, and flow control. Note commands
specify when to turn on and off a particular note (ala key on and key off). Parameter
adjustment commands allow control over which macro instrument will be used and how
it will be played. Flow control commands change how the SASS script will decode,
allowing for loops, calls to different music blocks, and termination of playback.

A basic command listing follows:

o Note Commands
A key on event at a given note may be specified with a three letter note
command, followed by a duration in driver ticks. The format is as follows:
 (Note Letter)(Natural, Sharp, or Flat)(Octave Number)

Note letters may be c, b, d, e, f, g, and a. Natural, Sharp, and Flat for the given

note may be specified using “.” (period), “s”, and “b” respectively. The octave

number may range from 0-9.
 ...

 c.4 60 ; C-Natural 4th octave for 60 ticks

 rest 10

 bs4 20 ; B-Sharp 4th octave for 20 ticks

 rest 10

 bb2 80 ; B-Flat 2nd octave for 80 ticks

 rest 10

 ...

o sfx,s ticks [base] : play instrument as sound effect

Begins playback of the current instrument as a sound effect with optional
frequency base (set to zero if excluded). This is useful for percussion.
 ...

 loop 9

 using HiHat_Closed

 sfx 6

 sfx 6

 using HiHat_Open

 sfx 12

 endloop

 ...

o pitch,pt offset [adjustment] : set pitch offset and adjustment

Set the current pitch offset and its optional adjustment each driver tick.
 ...

 as3 5 ; Start playing a note, wait five ticks

 pitch 0 12 ; DECREASE the frequency 12 counts / tick

 wait 20 ; After 20 ticks, it will be offset by

 pitch 240 0 ; 240 counts, hold it there...

 wait 5

 ...

o rest,r ticks : rest

Acts as a key off event if following a note command, or a general delay if used on
its own.
 ...

 as4 20

 rest 30 ; Key off, wait for 30 ticks

 ...

 rest 60 ; Wait for 60 ticks

 ...

HuSound Programmer’s Manual
Page 21

o wait,w ticks : wait
Pauses decoding for the specified number of ticks. Useful for delays where note
off behavior is not desired.
 ...

 wait 60 ; Wait for 60 ticks

 ...

o using,u instrument : set current instrument
Select the instrument used for playback in the music track.
 ...

 using piano ; Using instrument “piano”

 g.3 20 ; The following notes will be played with

 rest 10 ; “piano,” with each note request

 b.3 20 ; specifying a key on, and each rest

 rest 10 ; indicating a key off.

 a.3 20

 rest 10

 ...

o pan,p value : set current panning

An 8-Bit value representing the panning of the channel. Bits 7-4 are the

attenuation for the left speaker, and bits 3-0 are for the right speaker. 1111 is

loudest, 0000 is off.
 ...

 using piano ; Using instrument “piano”

 pan $f0 ; Set panning to full volume on the LEFT

 as3 12 ; Play the note in the LEFT speaker

 rest 24

 pan $0f ; Set panning to full volume on the RIGHT

 as3 12 ; Play the note in the RIGHT speaker

 rest 24

 ...

o sample,s number : play the specified PCM sample

Place the channel into PCM mode and begin playback of the specified PCM

Sample in the current PCM Sample Pack. After the sample has finished playing,
the channel will return to its previous mode.
 ...

 sample 0

 wait 24

 sample 0

 wait 24

 sample 0

 wait 24

 ...

o priority,pr value : set track priority

Adjust the current playback priority of the music track. This may be useful to give
certain parts of a piece more or less importance relative to sound effects.
 ...

 priority 120 ; Set priority to 120

 ...

 priority 240 ; Set priority to 240 (higher)

 ...

HuSound Programmer’s Manual
Page 22

o loop,l count : start of loop
Specifies the start of a loop, and the number of times it will repeat. If negative
values are used, the loop will continue indefinitely.
 loop -1 ; Repeat outer loop forever

 loop 10 ; Repeat inner loop 10 times

 as4 20

 rest 20

 endloop

 gs3 30

 rest 20

 endloop

 end ; Stop

o endloop,el : loop end

Specifies the end of a given loop.
 loop -1 ; Repeat forever

 fs4 20

 rest 30

 call drumSolo

 endloop ; Marks end of above loop

 end ; Stop

o call,c blockLabel : call script block

Begin decoding a given script block with the name specified in blockLabel.
 ...

 call pianoSolo ; Call the script block below

 ...

}

pianoSolo

{

 ...

 return

}

o return,rt : return from called script block

Resume decoding from where a given script block was called.
 ...

 call pianoSolo

 ...

}

pianoSolo

{

 ...

 return ; Resume decoding after “call pianoSolo”

}

o break,b : pattern break

Returns all tracks (not just the one encountering the command) to the lowest
entry in their CALL stack. Effectively, all tracks will be returned to the “main”
script if they are not there already.
mainTrack 120

{

 ...

 call pianoSolo

 ...

}

pianoSolo

{

 ...

 call drumminThang

}

drumminThang

HuSound Programmer’s Manual
Page 23

{

 ...

 break ; Resumes decoding after “call pianoSolo”

}

o end,e

Stops decoding of the music track and frees the channel
 ...

 end ; Stop

HuSound Programmer’s Manual
Page 24

►HuListen Auditioning Suite

 HuListen is a simple PC-Engine / TurboGrafx-16 program for testing composed Music,
Sound Effects, and PCM Samples. The state of the audio hardware registers and internal
HuSound variables are displayed in order to assist with SASS Script debugging. Simply swap out

the Sound Effect Package (.\HuListen\SASS\SFXPAK.bin), Music Track Package

(.\HuListen\SASS\MUSPAK.bin), or PCM Sample Package

(.\HuListen\SASS\PCMPAK.bin) with your own and rebuild using

(.\HuListen\HuMake.bat) to quickly test your new sounds.

HuSound playing some sound effects and music in HuListen

Controls:

 Up/Down: Select BGM / SFX / Voice

 Left/Right : Select Item

 I : Play Item

 II : Stop Item

Register Guide:

 VOL : Channel Volume

 PAN : L/R Attenuation.

 FREQ : Frequency Divider

 PRI : Priority

 MODE : Wave / Noise / PCM / Idle Mode Indicator

